Adaptive Time Warp Simulation of Timed Petri Nets
نویسنده
چکیده
Time Warp (TW), although generally accepted as a potentially effective parallel and distributed simulation mechanism for timed Petri nets, can reveal deficiencies in certain model domains. Particularly, the unlimited optimism underlying TW can lead to excessive aggressiveness in memory consumption due to saving state histories, and waste of CPU cycles due to overoptimistically progressing simulations that eventually have to be “rolled back.” Furthermore, in TW simulations executing in distributed memory environments, the communication overhead induced by the rollback mechanism can cause pathological overall simulation performance. In this work, an adaptive optimism control mechanism for TW is developed to overcome these shortcomings. By monitoring and statistically analyzing the arrival processes of synchronization messages, TW simulation progress is probabilistically throttled based on the forecasted timestamp of forthcoming messages. Two classes of arrival process characterizations are studied, reflecting that a natural tradeoff exists among the computational and space complexity, and the respective prediction accuracy: While forecasts based on metrics of central tendency are computationally cheap but yield inadequate predictions for correlated arrivals (thus negatively affecting performance), time series based forecast methods give higher prediction accuracy, but at higher computational cost. The sensitivity of the adaptive optimism control with respect to forecast accuracy and computational overhead is analyzed for very large Petri net simulation models executed with the TW protocol on the Meiko CS-2 multiprocessor, and for a stress case scenario on the CM-5. Empirical evidence is delivered showing that: 1) probabilistic optimism control, regardless of the communication-computation speed ratio of the target execution platform, automatically finds the most appropriate synchronization policy in the spectrum between optimistic TW and conservative Chandy/Misra/Bryant schemes, 2) local control decisions yield an efficient exploitation of simulation model parallelism that is “local” to particular spatial regions, and 3) even if simulation progresses in “phases” of different performance behavior (nonstationary simulations), logical processes can dynamically readjust their synchronization policy, thus in a natural way evading the partitioning problem under imbalanced loads.
منابع مشابه
Time Warp simulation of timed Petri nets: sensitivity of adaptive methods
The unthrottled optimism underlying the Time Warp (TW) parallel simulation protocol can lead to excessive aggressiveness in memory consumption due to saving state histories, and waste of CPU cycles due to overoptimistically progressing simulations that eventually have to be “‘rolled back”. Furthermore, in TW simulations executing in distributed memory environments, the communication overhead in...
متن کاملUsing Interval Petri Nets and Timed Automata for Diagnosis of Discrete Event Systems (DES)
A discrete event system (DES) is a dynamic system that evolves in accordance with the abrupt occurrence, at possibly unknown irregular intervals, of physical events. Because of the special nature of these systems, different tools are currently used for their analysis, design and modeling. The main focus of this paper is the presentation of a new modeling approach of Discrete Event Systems. The ...
متن کاملAdaptive Model Parallelism Exploitation in Parallel
An adaptive parallel simulation protocol is presented that evades the communication overhead caused by antimessages as induced by the rollback mechanism in the classical Time Warp protocol, in that it probabilistically throttles the simulation if it recognizes empirical evidence for a rollback hazard. The \unlimited" optimism underlying Time Warp is dynamically restricted to a degree that can b...
متن کاملA rule-based evaluation of ladder logic diagram and timed petri nets for programmable logic controllers
This paper describes an evaluation through a case study by measuring a rule-based approach, which proposed for ladder logic diagrams and Petri nets. In the beginning, programmable logic controllers were widely designed by ladder logic diagrams. When complexity and functionality of manufacturing systems increases, developing their software is becoming more difficult. Thus, Petri nets as a high l...
متن کاملTime Management Approach on a Discrete Event Manufacturing System Modeled by Petri Net
Discrete event system, Supervisory control, Petri Net, Constraint This paper presents a method to manage the time in a manufacturing system for obtaining an optimized model. The system in this paper is modeled by the timed Petri net and the optimization is performed based on the structural properties of Petri nets. In a system there are some states which are called forbidden states an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Software Eng.
دوره 25 شماره
صفحات -
تاریخ انتشار 1999